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PATTERN FURMATION BY SHOCK PROCESSES™

J. W. Shaner
Los Alamos National Laboratory

Abstract

Shock waves in condensed media often produce and leave behind periodic
patterns and textures. These patterns have been otserved both in real time
and in post-mortum examination. In many cases the patterns can be related
to analogous Pattern-forming mechanisms in classical fluid dynamics, such
as the Rayleigh-Taylor and Helmholtz instebilities. In other cases, the
textures arise from peculiarities in the dynamic st.ess siale immediately
behind the leading edge of the shock wave.

Periodic waves in thc interface betwez2n two shock welded mecals have a
close resemblance to the classical Helmholt: instability. From a practical
point of view, these waves are cruclal to the formation of a good bond.

Impulsive acceleration of an interface can result in tne Meshkov in-
stability, which forms patterns qualitatively similar tc the Rayleigh-
Taylor instabiiity driveu by continuous acceleration. However, the
patterned stress state left behind after a shock crosses a perturbed

interface can result in perturbation growth for shock propagation in either
direction acroas the interface.

Even in homogeneous media, the non-hydrostatic component of the stress
hehiind a shock can drive a pattern forming instability. Adiabatic shear
bauding has been proposed as a mechanism to exploin both the patterns
obierved in shack-compressed aud recovered metal samples and the apparent
lass  of  macroscople shear strength of shocked ceramics. New optical
phot  taphs of shocked quartz support this mechanism.

RS supported by the United States Department of Encrgy.



Introduction

Shock waves in condensed media are usually associated with very
destructive and chaotic explosions. However, even these destructive
precesses exhibit a wide variety of patterns formel directly behind the
shock tront. 1In some cases one can even recover, up?n release of t! shock

pressure, pleces in which the shock-induced patterns are preserved.

Experiments over the past few decades have shown that a surprising
degree of order and coherence persist behind 2 shock wave, at least until
waves reflected from irregular boundaries seriously complicate the flow.
For example, with the assumption that the stress b~aind a shock is
hydrostatic, measurements of shock propagation have provided a good first
approximation to much of our high pressure equilibrium equation of state
dnta-1 Furthermoruv, direct flash x-ray diffraction measurements have shown
that cven crystalline order is preserved behind a shock wave in solids, and

that this order 18 coherent with respect to the unshocked crystal structure
2

as well,

In this paper 1 shall review and highlight three kinds of macroscopic
patterns which occur in shock wave processes 1in  condensed media. These
patterns have in common  that they evolve in a microsecond, or less, and
that each 18 analogous to an ingtability in conventlonal tluild nechanics.
The firet {s a wavy interface left behind when two metals are forced to
colllde at high velocity. Thewe waves have features qualitatively 1ike
those found In the classical Kelvin-Helmholtz fnstability associated with
shear flow {n fluldse The second pattern I discuns {9 n periodice lamellar
structm e which has often been observed In metals and ceramics subjected to
gshoeck compressfon and recovered upon release. This phenomenon {8 related
to a  thermomechanteal  f'ald fortab{l{ty usually referred to as adiabatic
shear banding. The third pattern T dlacuns evolves after an {nltially
planar ulock wave passes a rippled interface seporating two mater {alu.
Tiuls contfguratton {8 afmilar to the Raylefvh=Taylor {nstability problem.
However, wafnce for atrong shockn ovea condenned med{a mint be cons tdered
compresnible, tuterenting aon-l{nearfties occur early fn the growth «f the

frftinlly perturbed {nterface,



Waves in Explosive Welding

In order to form good weld joints between metals, two essential condi-
tions must be met. The metal surfaces must bLe uncontaminated (e.g. by
oxlde layers:) and they must be brought :nto intimate contact. In fusion
welding, the metals are actually melted arnid concaminations are allowed to
float away from the joint region. 1In pressure welding, any surface layer
of contaminants is broken up, allowing intimate contact, at elevated
pressure, of the clean metals. Neither of these processes 1is very effec-
tive 1f the metals have widely different melting points or plastic flow
strengths.

During World War I, ordinance speclalists noticed that under certain
conditions, bullets and shell fragments bonded to the metal target plates
they hit. Although these may have peen the first observations of explosive
welding, the first published accmunt did not appear until 1949.3 During
the next two decadas, a number of people began to exploit some of the
unique features of explosive welding to make bonds between metals which
would be impossible by other neans.4 At the same time, carefully con-
trolled cxperiments, where impuct velocity and obliquity of collision were
contrulled, showed that ripples formed at the interface under the same con-
5.6

ditions that favored good weld joints. These ripples are the subjcct of

this rection.

The ripples formed at the dinterface of two metala undergoing high
velocity obligque fmpact were first studled systematiernlly by Abrahamson. ?
He used the confipuration sketched in Fig. Ia. Flat nosed steel bullets
were fired at toin metal targets Incliaed at an anple, 0, with respest to
the front surface. In a coordinave systoem (ixed at the point of contact,
the target looks ks an fnefdent Jet of  veloefty V/atat and angle  of
inctdence 0 with respect to the plane of the bullet face. Abrahammon found
that {f Vealn® was lews than the speed of sound o the target, or {f {1t wau
nupersonfc  bae with 8 preater than some eceftieal value, wiaven were formed
at. the mterface.s I VWetn® wan  supernoufe and 0 wan  leas than the

critliceal value, no waves were formed.
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For the subsonlc case, simple conservation of momentum implies that
the incident jet bifurcates into flows to the right and to the left along
the bullet face 1in Fig. la. For supersonic flow with 8 above a critical
value, we also have conditions for a jet forming and flowing to the left
away from the point of contact. For supersonic flow with smaller than
critical obliquities, no such jet is formed, and the incident flow does not
bifurcate. This behavior of supersonic flow 1is well known from the devel-

opmert of explosively driven shaped~charge jets.7

The correlation of a wavy interrace with bifurcated flow and a jet
emerging from the point of contact and flowing to the left in Fig. la

suggests the Kelvin Helmholz instability as a mechanism.8»9

‘n fact chere
must be large gradient in horizontal flow velocity at the rlanar bullet
face. On the uther hand, the large gradients along the bullet surface

seriously complicate a quantitative analysis.

The configuration shown in Fig. lb 18 now that most commonly used for

welding and cladding, especially for very large pieces.10

In this configu-
ration, Vp is the velocity given to the flyer plate by detonating explo-
sive, while 0 is the angle of impact. Vp can be varied by changing the
type of cxuplosive or the standoff between the flyer ona the base plate.
For steady flow, the point of contact moves witn the detonation velocity
(Vc - VD). and Vp and 0 are constants. This geometry can casily be
transformed to that of Fig. la, and therefore, the Jetting conditions are
s#imilar. For conditions favoring good weld joints, jets have actually been

nbnvrvud.ll

In the welding process, the function of the jet emerglng from the con=
tact point I’ eaay to understand. The jet scrubs materfal from both the
flyer and base plates allowing elean metal surfaces to come into contact nt
high pressures. For optimum welding, one needs a Jotting configuration,
and {mpact velocitfes high enough to caune mevrals to Flow plastically but
nnt so high that material at the {nterface melts. Rapid melting and

resolidification serfously weakens the bond 10,
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The most detailed study of the waves on the welded interface was
carried out by Bahrani, et.al.12 In this study they found that as the wave
amplitude grew, significant non-1. -arities appeared. By plating the steel
base and flyer plates with copper and nickel, they were able to observe the
effects of the jet and where in the interface profile remaining surface ma-
terlal wound up. Nickel from the flyer plate was concentrated in a vortex
pattern behind the peaks of the waves, while copper from the base plate was
moved ahead of the peak of the wave. Both copper and nickel were mixed in

a vortex on the leading edge of the wave. The leading and trailing vorti-

ces are also asymmetric.

At the pr-esent time, the only theoretical and numerical analyses of
these waves in weld joints have been qualitative or badly oversimplified.

The analysis by Bahranil, et al.,12

although in qualitative agreement with
their experiments 15 not quantitative. The quantitative analyses, based on
Kelvin-Helmholtz instability theory are successful at predicting
wavelengths for the ripples, but these calculations do not audress the vor-
ticity and non-linear wave growth.8'9 Detailed calculations of the non-
linear instability of parallel shear flows perhaps come closest to the
experimental situation, excefrt that we do not have a strictly parallel
shear flow.!3 Finally, the e&ffects of {(nterfacial energy, material
strength, and comprcssibility have not been considered quantitatively. 1In
coanclusion we can say that we have enough empirical results to make good
we.d Jjoints explosively. However, we do not yet have the analytical capa~
bility to prediet the kinds of non-linearities which develop ian the waves

at ‘he bonded interface.

Adiabatic Shear Banding

Another pattern often found in materials recovered after shock com-
pression and release consiats of roughly periodic lamellar structures along
specifiec crystallographic planes. These features have been known for a

long time in metnln.la

Recently spatially periodic luminescence also ocen
obrerved directly behind a shock front in qunrtz-ls Some crystallites in a
poly~rystalline sample show many such [eatures, while others do not. The

cryatallite orientation with reasapect to the shock or release wave fronts
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are obviously important. The connection between crystalline and stress

tensor orientation is the key to the generation of these patterns.

In the simplest model for steady shock wave propagation in condensed
media we consider the stress to be a simple scalar pressure. However, in
even the earliest work on shocks in solids the authors realized that solids
could support non-hydrostatic stresses.1 Since the compression due to a
shock wave 1s uniaxial in the direction of propagation, the natural choice
of vrinciple stresses are the longitudinal component, along the propagation
direction, and the transverse compouenis, assumed equal for isotropic mate-
rials. We expect that the longitudinal component will be greater than the
transverse components, so long as the material can support shear stresses.
With this stress configuration., the planes in which the shear stresses are

maximum will lie at 45° to the longitudinal direction.

Under these conditions, as the shock strength is increased, the longi-
tudinal component of the stress will increase, while the transverse compo-
nent 1is determined solely by Poisson’s ratio, "ntil a point called the
Hugoniot Elastic Limit is reached. At this point, the shear stresses in
the planes at 45° tn the propagation direction are the maximum the material
can support, and stronger shocks will result in pilastic deformatlon such
that the resolved shear stresses remain bounded. This picture irf the basis
of the vonMises yleld c=iteria often used in hydrodynamic flow

calculations.

Within the framework of this simple model we would expect that as the
shock strength inrreased, the longitudinal and transverse stresses would
differ by an amount such that the maximum resolved shear stresses would be

just enough to start plartic flow.

We show 1n Fig. 2 the various stress strain pachu we cxpect if the mu-
terial behaves hydrostatically or with a constant difference between longi-

tudinal and transverne stress above the Hugoniot elarstic limit.



—7_

For a number of years, however, we have suspected that the stress
state behind a strong shock approaches hydrostatic (i.e. no stress
deviators). This has been especlally evident for brittle materials but
more recent results suggest the same phenomenon for metals. In particular,
by looking at the ability of shock compressed metals to support elastic
recompression and decompression waves, Asay has shown that the intermediate

stress—-strain curve in Fig. 2 may be more appropriate for metals-l6

A model developed by Grady shows the qualitative features resulting in

the periodic structures.17

Uf an initially hemogeneous material is allowed
to evolve from initially uniform shear, it may develop a shear bonding 1in-
stability under appropriate conditioms. 1f, for example, the effective
viscosity decreases with temperature, a local high temperature will cause
concentration of the dissipative energy due to shear flow. As a result

further temperature rises will further concentrate the shear flow.

For a two dimensional problem with material velocity, U, in the y

direction and gradients only in the X direction, the flow equations are

sv_ 18y , and (1)
t Do X

ST &2t SU

-0 - = x_or (2)

In Eq. (1), Ny {s the density, and 1 15 the shear stress. 1In Lq. 2, D is
the thermal diffusivity, which limite the local temperature rise, and C 1is
the heat —apacity. These equations must be completed by a third describing
the relation of shear stress, velocity gradlient and temperatu.. . For exam-

ple, Graay modeled tle effective visconity to give



-a(T-T,) | Sy

T= [no e Gx . (3)

By linearizing Eqs. 1-3 for small perturvations from a homogeneous state,
and assuming solutions of the form et ein‘ one obtains a curve for a vs
B=l/) as shown in Fig. 3. The growth rate is limited for small wavelengths

by the assumed thermal conduction.

The largest difficulty in applying this model quantitatively is
establishing a realistic ccnstitutive relation (3). With reasonable as-
sumprtions about the viscosity model, Hayes and Grady have shown that
agreement can ve obtained between the sclution to Eqs. 1-3 and the observed
lamellar structure 1in shorked aluminum with a wavelength of the order of
1-10 Hm-18 The predicted growth rate at this wavelength 1s around 108

Svc_l. which is also appropriate for a shock process.

A much more detailed analysis, especially of Eq. (3) will be necessary
before an understanding of the phenomenon of shear banding can be complete.
For example, one would expect localized work hardening to play the same
role of damping the instability a- does thermal conduction. 1In the case of
brittle so0lids one needs to include the surface energy generated by
fractures, unless the confining pressure {s so great that even brittle ma-
terials behave plastically. However, the adiabatic shcar banding model
drnes explain the apparent macroscopic hydrodynamic nature of solids under
shock compression, and the varied patterns appearing during and upon

recovery fror shock waves.
Richtnyer-Meshkov (RM) Instablifty

When a shock wave passes an interface s»parating two fluids of
ditfering densiry, an instability analogous to the classical
Rayleigh-Taylor {instability occurs. Since the shock 1ccelerates the
interface in the directicn of propagation, any initial perturbations will
prow 1f the acceleration {s directed from the light fluid to the heavier
fluid. However, there are scveral qualitative differences between the con-

t*nuous acceler:tion and the {mpulsive acceleration cases.
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In the original paper, Richtmyer solved numerically th¢ hydrodynamilc
flow associated with the shock wave, or impulsive, acceleratlon of the
interface between two fluids.!? The configuration is shown 1in Figure ¢.
An 1nitial perturbation of the iuterface of the form a coskx was assumed.

In the case of continuous accel ration, the time dependent amplitude is

given by

Pa=p
2 1y | (4)

Pa+oy

where g(t) 1s the acceleration of the system and f1 and P2 are the
densities.* If the acceleration is impulsive, as with a shock passiag the

interface, then

g(t) = U &(t) (5)

where U is the material velocity jump across the shock. Integrating

equation (4) then gives

. fiq=p
a = kUa_ f-t——l,‘ (6)

Altho. gh this expression is an oversimplification f.om several poluts of
view, which wili be discussed later, results derived from it agreed with
Richtimyer’s numerical calculations for y~lav gases, so long as he chosc
densities and an initial ampllitude appropriate for the time j:.st after the
shock-interface interaction. For low amplitude shocks in {deal gases, the
density ratio between slngly shocked dense (lufd (SF2 {n Fig. 4) and doubly
shocked light fluid (DSFl in Fig. 4) is within a few percent of the initial
density ratio. Therefcre, the most sensitive parameters in Eq. (6), are
ag, Which can be compressed by a factor of two even with C.1-0.2 MPa shocks
{n dideal gases. and the material velocity at the interface which may be

less than half of that tollowing tb~ 1irst shock in fluid 1. Uncertainty
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in the choice of these parameters arises as a ‘esult of comparison of nu-
merical results for ccmpressible fluids with an analytical expressioc for

incompressible fluids.

The simplified expression (6) does show a fundamental difference be-
tween the impulsive and constant acceleration cases. In the constant ac-
celeration case, the pertyrbations grow only 1f the acceleration is
direc-ted from the light {luid to the heavy fluid. Otherwise the perturba-
tion woscillates. On the other hand, equation (6) indicates that for an
impulsive acceleration the perturbation of an interface grows no matter
which direction the acceleration, or the direction of shock prupagation,
1c. 1If a shock passes from a low density to a high density fluid the per-
turbation amplitude grows. If the shock propagatecs from a high deusity to
a low density fluid, the amplitude passes through zero and grows with

opposite phase.

Nine years after the Richtmyer work, Meshkov published experiments
measuring interface perturbation growth wich weak shocks (70.1 MPa) 1in

ideal gases (T0.1 MPa air, He, Freon, and COZ).21

In these experiments he
observed the linear growth of an initial perturbation when the shock passed
from a 1lignt gas to a Leavy gas. He aiso ubserved the reversel in phzse
and subsequent amplitude growth when the shick passed from the heavy to the
light gas. These results, although in qualitative agreement with equation
(6), shewed growth rates only 0.5 times the predictions. The source ot
this discrepancy was presumed tn be elther an experimental problem associ-

ated with the f{lm scparating the gases, or the onset of non-linearirty

(ka~1). No further experiments have been done to confirm thmse hypotheses.

An interesting feature found both {n the numerical calcularfons and in
a close examination of the experimental uwata (s that even the {1nitial
grovth  of  the perturbations is non-linear. The growth rate oscillates by
10-20%7 around the vaiue predicted by Eq. (6). Richtmyer already identified
this feature as due to the overstable nature of a rippled shock fronc in
compressible fluids. In reference to Fig. 4, 1f the shock velocity 1in
fluid 2 {s slower than the incident shock in fluid 1, the transmitted shock

will be rippled with an initial phase thz same as that cf the {aterface.
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When such a shock wave propagates in & compressible fluid (i.e. finite
sound velocity), pressure 1s concentrated behind the laggine part of the
shock froat by convergence. Therefore, the stress field {mmediatelv behind
a rippled shock will have a coherent texture with respect to the ripples.
In the subsequent flow, signals ran propagate forward to the shock frent,
making the shock front non-steady, and backward to the original interface,

superirposing another texture on this interface.

The overstable, or oscillatory nature of a rippled chuck front has
been measured directly in metals by Sakharov and Mineev.2%2:23 15 these ex-
periments, a «r'ppled shock front was driven into metale at a stress level
high enough that the metals behaved macroscipically like fiuids. The phase
of the ripples reversed before the shock front became planar indicating
that the perturbation oscillates as {t decays. This feature 1s a
manifestation of the textured stress field left behind by non-planar shocks

in a compressible medium.

Since the textured stress fiald behind a rippled shock depends on the
nature of the ripples in the shock front, and since this texture can effect
the initial non-linear growth of a perturbed interface, wel have to 1look
more closely at what variety ot configurations of interface and stress
waves are possible. The calculations of Richtmyer and Meshkov’s experi-
ments utilized only gamma-law ideal gases. For this restrictive equation-
of-staze. the density, p, 1s proportional to moulecilar weilght, m.
Similarly, the sound velocity, C, is proportional to (T/m)llz, where T is
the temperature. In the limit of weak shocks, the shock impedance, I = pC,
is then simply proportional to ml/z. ‘The +hor'- 1mpedances, shock
velocities, and densities of the two flulds all play a role in the hydredy-

namic evolution of the system.

The 1ideal gas equation-of-state allows only two of six qualitetively
different configuratiors for the R-M {nstability. For example, we have
already seen that {f p, > P1» the initial interface perturbation grows
without change in phase. On the other hand, 1f Py > Po» the 1initial per-
turbation changes phase before growinp. Similarly, 1f C, < C;, the

transmitted shock wave is in phasc with the initial interface perturbation.
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Therefore, the 1nitial regions of highest stress in the textured stress
field behind the rippled transmitted shock will be near the part of the
interface concave toward fluid 2. On the other hand if €y > Cy» the ini-
tial ripples in the transmitted shock are of opposite phase with respect to
the 1interface perturbations, and the stress fiel? texture induced by the
Tippled shock 1s the opposite from the C, < Cy, case. For ideal guses, 1if
Pp > Py» then CZ must be less than Cl' and vice versa. dowever, it 1s easy
to find pairs of materials with more gencral equations-—of-state for which

this role does not hold.

Une further complexity concerns the relative shock impedance of the
fluids. Fcr the i1deal gas equation of state, the denser fluid necessarily
has the pgreater shock 1mpedance. Therefore, if pyp > .y, then the wave
reflected back into fluid 1 is a second shock, as shown in Fig. 4. Again
it 1is easy to find pairs of materials for which p; > py, but I, < I;.
Then, although the intecfacc perturbations still grow without change of
phase, the reflectced wave is a rarefaction. For a rippled rarefaction we
should cxpect the stress field texture left behind to be roughly opposite
in phate to that 1cft by a shock. All of these cases are summarized in

Table 1.

At this point, we should point out that even the complexities of
Table | are not sufficlent to cover all of the poteutial non-lincarities in
this originally simple hydrodynamiec {low. Carcful measurements by

24 25 have demnnstrated that the converpent parts of

Sturtewvant, and Meshkov,
shock waves, even In ddeal gases, nederyo a complex time history, including
the  formatfon of Mach reflections, or three=shock intersccetion points. 1In
the c¢lassic Mach reflection problem, we know that a slilp line develops
behind the triple shock fnteraction point, with a large flow velocity gra-
Glent aecross the slip 1dne.  In some cases this slip line 18 cleary unsta-
Lle (Helmtoltz Tnstabllity), and persistent vortices can bhe left huhinde.

Meshkov has also shown that simtlar complex wave {nceractions  can  develop

27

fn a rippled rarefaction wave.
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Although we have listed the grors features which influence the non-
linear growth of the RM instabilities in Table 1, the complexity of the de-
tails of flow essoclated with rippled waves may result in a much richer
variety of possibilities. Fluid viscosity and 1interfacial temsicm will
undouhtedly complicate the RM instabllity in fluids with weak shocks. We
expect, for example, that if the interfacial energy density in the mixing
region 1s comparable with the energy of compression by the shoeck wave, then
surface tension will play a role in the subsequent flow. Mnie careful
measurements and rellable and dctailed hydrocode calculations will be nec-~
essary to observe all of the non-linear phenomena associated with this in-

stability.

We have outlined three qualitatively different kinde of non-linear
instabilities resuliing 1n pat.cern formation behind Jshceck waves in
condensed media. Each instability has an analog 1n more conventicnal fluid
dynanics. A great deal of analytical work, particularly numerical
calculations, will be necessary pefore we will be able to claim a detailed
preaictive capability for any of these pattern forming mechanisms.
However, the strong analcgles %o better known fluid instabilities have
glven us significant insight into the processes at work eveﬁ on the sub-

microsecond time scale.
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TABI'Z 1. POSSIBLE BM CCNFTCURATIONS

(4 39

KEFLECTED

ZINSITY SCUND VILOCITY IMPEDANCE SHGCK INTERFACE WAVE EXAMPLE

29 > zs gy, > C- I, > I -b 438 s¢ Cu/PMHMA

S > 2y C2 < C1 12 > I1 + + S 1DEAL GASES
Sa > 2, Cy < Cy I. <1, + + rd Teflon/Be
ts € - Cy > Cy I, > 1, - - S Be/Teflon
2, € 2y C2 > CI Iz < Il - - R 1DEAL GASES
s <2y $y < Cy I, <14 + - R PMMA/Cu

In chase with original perturbation.

?azelaction wave.

Jzpocsite phase with respect to original perturbation



-17-

Figure Captions

Fig.

Fig.

Fig.

Fig.
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A. A flat-nosed bullet, fired obliquely into a target plate can
develcp ripples in the bullet face.

B. The most useful configuration for explosive welding results in

ripples at the weld joint.

longitudinal stress vs strain for various compression processes.
The Hugoniot represents a possible track for shock compression.
T, represents the maximum stress deviator the material can
suppert. If the stress behind a shock front had no tendency to
approach a hydrostatic state, compression would be along the upper

yleld curve.

Schmatic of the sclution to the linearized ver..ion or Eys. 1-3.
The prowth rate for adiabatic shear bands 1s limited at large

wavenumber by thermal conduction.

Configuration for observing Richtmyer=-Meshkov instabilities. On
the left, a shock Is incident from fluid 1 (Fl). The shocked
fluid 18 denoted SF1e On the right, after this shoek han passed
the fluid {nterface, the transmitted shock separatos fluid 2 (F2)
from the shocked fluld 2 (SF2).  The reflected shock separates
shocked flufd 1 (SF1) from the double shocked fludd (DSFL).
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B. EXPLOSIVE WELDING
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